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@ CCSN Observations indicate asymmetry

@ Basic Physics of CCSN & the Neutrino
Mechanism

@ 1D, 2D, & 3D simulations

@ Magnetorotational CCSN

® Can MR-CCSN fit the observations?
@ Basics of Magnetohydrodynamics

@ MHD in CCSN
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So, Who cares?




@ Real stars rotate and are magnetic!
@ The initial conditions are still uncertain...

@ Could have dramatic effect on explosion
dynamics

@ May be critical to explaining observations

@ Magnetars, Pulsars, GRBs, oh My!
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SN Polarization

® ALL core-collapse SNe are polarized

® Higher asymmetries in the cores of
explosions

% Often show a “dominant
axis” 1n Q/U plane -
1hdicates an elongated
explosion

® Loops in Q/U plane
1hdicate non-axisymmetry

Wang & Wheeler 2008
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Type IIP Polarization

SN 2004d

Core revealed
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What Do the
Observations Tell Us?

@ Massive stars explode all the time, with energies
around 10°! erg

@ They are NOT spherically-symmetric

@ They often show general 'bi-polarity’ with significant
non-axisymmetry and time-dependent polarization.

@ They leave remnants that often have high Kick
velocities and strong magnetic fields.

® Some CCSNe are associated with GRBs.

@ Mixing & overturn commonly indicated.



Core Collapse Basics

£ p+ —> Wb
e” degeneracy
pressure fails

R [km] Initial Phase of Collapse Neutrino Trapping
(t ~ 0.1s, @.~10'2 g/cm3)

M(r) [M] 05 My 1.0 \ M(r) [M]

\ heavy nuclei
Si—burning shell Si—burning shell

Janka (2007)




Core Collapse Basics

po ~ 10 g cm ™

R [km] Bounce and Shock Formation Shock Propagation andv, Burst

5 (t~ 0.11s, Q¢ < 2Q0) d , (t~0.125)
a I a

: y
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shock ] |
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shock
formation
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Core Collapse Basics

Shock Stagnation and v Heating, Neutrino Cooling and Neutrino-

///

Explosion (t ~ 0.2s) Driven Wind (t ~ 10s)
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Whats the big deal?

@ Neutrino radiation hydrodynamics is hard!
@ Highly non-local problem.

@ Must have closure scheme for radiation
transport (or Boltzmann) moment equations.

@ Common closure schemes: Flux-limited
diffusion, Ray-by-ray spectral transport, full
multi-angle spectral transport, etc.
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An Explosion in 2D:

@ "Ray-by-ray plus” method (Buras et al. 2006)
@ variable Eddington factor technique

@ rather under-energetic explosion only for
11.2 Mgyn star.

Wednesday, July 27, 2011



dwwpoy ‘D)UDL ‘YadbW ‘sbung

Wednesday, July 27, 2011



time=0.0130s
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Nature isnt two
dimensional...

@ Murphy & Burrows (2008) and Nordhaus et
al. (2010) found that explosions are more
easily obtained in higher dimension.

@ Parameterized neutrino heating & cooling
with approximate deleptonization scheme.
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Entropy

Nordhaus, Burrows, Bell, Almgren, Chupa
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Some Salient Features of
the Neutrino Mechanism

@ 10°° erg released in neutrinos!

@ Sophisticated 1D simulations dont give

explosions for progenitors bigger than about
10 Mgun.

@ 2D simulations only give explosions for 11.2
Msun progenitors.

® Multidimensional effects (convection, SASI)
critical to success.

@ Easier to get explosion in 3D!



Neutrino Mechanism
Report Card

@ Massive stars explode all the time, with energies
around 10°! erg!

@ They are NOT spherically-symmetric

@ They often show general 'bi-polarity’ with significant
non-axisymmetry and time-dependent polarization.

@ They leave remnants that often have high Kick
velocities and strong magnetic fields.

® Some CCSNe are associated with GRBs.

@ Mixing & overturn commonly indicated.
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Magnhetorotational
SNe

% A1l stars rotate and have magnetic
fields!

S Magnetic fields can tap the energy in
differential rotation to power
outflows

% Some progenitors may rotate fast
enough to power a magnhetorotational
explosion

S See Wheeler et al. 2000, 2002
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Rapid rotation, but in line with PNS rotation speeds
from Burrows et al. (2007).

Not all of this energy will be available to drive an
explosion!




Magnetorotational
SNe

x [100 km]

Burrows et al. 2007
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Magnhetorotational
SNe

® Rapid rotation required for MHD jet-
driven explosion

S MHD & rotation may still be important
1n slower rotators

% SN progenitor core rotation and B-
field not well defined

® MRI not resolved in simulations

Wednesday, July 27, 2011



Magnetorotational
SNe

® Elongated explosions

® Non-axisymmetries via instabilities
® High-velocity nickel clumps

® Complex, large-scale structures

® Mechanism for pulsar kicks

® Continuum to GRBs with higher rotation
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Can Bipolar Explosions
Explain Observations?




Jet-driven Type IIP SNe
SMC, Wheeler, Milosavljevi¢ 2009, ApJ, 696, 953

@ 15 M, Red SQpergiamL pi”o'geni’ror. qur
@ FLASH hydrodynamics éode

@ Jefts infrdduced at inner boundary

@ Four physically-motivated jet models

® Evolved to 500,000 seconds

Wednesday, July 27, 2011



Dynamic Range

@ A;~ 10° cm out to 10" cm
@ 2D spherical geom.

@ 7 refinement levels, re-
gridding algorithm
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Dynamic Range

D8 mg vami2 ha!S RSN
Cyck 00 Time: TOUSES

Pesudocolon
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@ 2D spherical geom.

@ 7 refinement levels, re-
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Density

Fast, Kinetic Slow, thermal
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Jet-driven Type Ib SNe

SMC, Pooley, Wheeler, MilosavljeviC 2011, ApJ, 727, 104

@ 2.5 & 6 M, helium core progenitors
® Thermal & Kinetic jet models in each

@ FLASH hydro

@ Custom post-processing radiation modeling
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Dynamic range

@ 2D cylindrical geom.

@ Radius, time-dependent max.
refinement level

® Modified FLASH to excise
central hole

e i

@ Hole radius expands with time

| ™
L [ |

R

@ No need for regrid; start with
25 refinement levels
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Density

Kineftic Thermal

Smaller Progenitor
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Small progenitor, Kinetic jets

S LC shape and time scales about
right

X-ray uv

SN 2007uy © SN 2007 uy.

2008 January 7

300 400
time (sec)

SN 2008[° Y SN 2008D @

SN 2007uy O SN 2007uy

$ Spectra are too soft

2008 January 9

$ LC time scales right-on!

Soderberqg et al. 2008
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@ Phenomenological, jet-driven explosions can
explain many of the observations, but lack
crucial physics.

® Need nuclear EQOS, neutrinos, and MHD:
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Euler Equations

p o
. iy V-(pv) =0 Mass
s,
g;’ LV - (pvv) + VP = pg Momentum
OpE
B i V- [(pE+ P)v|=pv-g Energy
EF=¢e+ %‘V‘Z
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0pv
~+V-(pvv-BB)+ VR = pg
2
p. = pie
2
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0pv
~+V-(pvv-BB)+ VR = pg
5 T = viscosity tensor
e 5
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0pv
~+V-(pvv-BB)+ VR = pg
OpE
o~ + V- [(pE% P)v | =pv-g
5 T = viscosity tensor
P.=P+~
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0pv
~+V-(pvv-BB)+ VR = pg
OpE
o~ + V- [(pE4 B)v | =pv-g
5 T = viscosity tensor
P.=P+~
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0pv
gt -V - (pvv )+ VP = pg
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o~ + V- [(pE4 B)v | =pv g
i " = VISCoSITYy tensor
P, = P+ ; o = thermal conductivity
2 7 = resistivit
E*:6+1v2+13— i b
2 2 p

Wednesday, July 27, 2011



0pv
gt -V - (pvv )+ VP = pg
OpkE
o~ + V- [(pE4 B)v | =pv-g
Induction Equation:
B
%t -V - (vB —-Bv)=-V x (nV x B)
i " = VISCoSITYy tensor
P, = P+ ; o = thermal conductivity
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dpv 0
gt -V - (pvv )+ VE = pg /
OpE G D
o> -V - [(pE 4+ P)v |=pv-g Vi o/
° ° /
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V - Bi=alll

Solenoidal Constraint

Three Common Methods fto Satisfy Constraint:

1. Elliptic projection (Brackbill & Barnes 1980)
2. Constrained transport (Evans & Hawley 1988)
3. Divergence cleansing (Powell et al. 1999)




B-field Amplification in
CCSNe

@ Field compression: field carried along with
collapsing plasma: “flux-freezing”

@ Field winding: linear process, wraps up field
lines. B¢ ~ 27TTL¢BP

@ Magnetorotational Instability (MRI):
exponential growth of initial field.

Saturation field strengths as high as 10%° -
10% G.
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MRI

01
TMRIN47T( Il?") SRl

0
% B
{\H/Ia]:fﬁ ~ T;;}A ~ (104 Cm) P10—11/22
P11

® Grows on the rotational time scale.

@ Requires restrictive resolution! 100 fimes
that of high-resolution CCSNe sims.

@ See, e.g., Akiyama et al. (2003),
Obergaulinger et al. (2011).
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Conclusions

@ Observations show that CCSN are aspherical
@ Physics of CCSN & the Neutrino Mechanism

@ Robust neutrino-driven explosions are not
found in sophisticated calculations

@ Rotation and magnetic fields may play an
important role in shaping or driving CCSN
explosions

@ Bipolar explosions may explain observations
indicating asymmeitry

® MHD effects are important in CCSN
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Basics of Unsplit Staggered-Mesh (USM)
Constrained Transport

8U|(’9FI6’G_O
Gt Or ' Oy

U = (p, pu, pv, pw, By, By, B, E)*

pu pv
pu? + Pro — By pvu — BB,
puv — BBy PV + Diot — B;
puw — B,B, pvw — B,B,

0 ’ vBy — uB,(=E,)
uB, — vBy(= —E,) 0
uB, — wB,(=E,) vB, — wB, (= —Ey)
(E + por)U — Bx(uBx + vB, + WB;) (E + piot) ¥ — By(uBx + vB, + WB;)

From Lee & Deane (2009)



MHD Waves

o Alfven waves

D




SN Polarization

S Cannot “see” the shapes of distant SNe

® Can get wavelength-dependent info on the
shapes of the photosphere and line-forming
regions

* Measure Stokes
C
parameters: ;D= '

| D—~»"
__Supernova

I »
. g+ 20050p
A

SDSS December 21, 2004 * HET March 7. 2005
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SN Polarization

(14

S Cannot “see” the shapes of distant SNe

S Can get wavelength-dependent info on the
shapes of the photosphere and line-forming
regions

$ Measure Stokes

C

parameters: 5 D= Te
é £
: o A s o
I =1+ Igg s ) ; ;
Q E— IO ot _[90 P : SDSS December 21, 2004 * HET March 7, 2005

U=1I45 —1_45 NI TN
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SN Polarization

(14

¢ Cannot “see” the shapes of distant SNe

S Can get wavelength-dependent info on the
shapes of the photosphere and line-forming
regions

$ Measure Stokes

parameters: . D-w® T
a fg
: S 2578 ;
I = Ig + Igg ) : :
Q F— IO e _[90 P : SDSS December 21, 2004 * HET March 7, 2005

U=1I45 —1_45 NI TN
1

P=\QP+U2/I2= /g +u?  x=;tan ' (u/q)
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SN Polarization

2.3




SN Polarization

Lo
i ® P=Q=U=0: no net
% . polarization, circularly
Y_> 90

symmetric
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SN Polarization

To
5 ® P=Q=U=0: no net
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Y_’ 90
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SN Polarization

Lo
Las % P=Q=U=0: no net
% polarization, circularly

Top ;
symmetric

I-45

I
I45

® P,Q,U=0: net polarization,

0
%—» Io asymmetric emitting region

145
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HX sub-structure

@ Appearance of peaks
in line require fast
nickel clumps
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Type IIP Polarization

SN 2004d,

Core revealed

11 Photospheric I il Becoming nebular
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Photosphere Shapes

‘Day 50 Day 100
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